γ-Jet in sPHENIX

Joe Osborn University of Michigan

Physics Motivation

- PRD 81,094006 (2010)
 predicted factorization breaking
 in p+p—>h₁+h₂+X
- Nonperturbative PDFs and FFs quantum mechanically correlated across hadrons
- Important check of understanding of perturbative QCD in a transverse momentum dependent framework - results from same physical mechanism leading to Sivers sign change

- Perturbative evolution predicts that momentum widths sensitive to nonperturbative transverse momentum should increase with increasing hard scale
- Confirmed in Drell-Yan and Semiinclusive deep-inelastic-scattering

Physics Motivation

- PHENIX recently submitted arXiv:1609.
 04769, dihadron and direct photon-hadron correlations
- Measurements show opposite trend from perturbative evolution prediction
- Ideal measurement is photon-jet: can study factorization breaking with control over fragmentation
- Sensitivity to convolution of k_T and j_T for γ -h; sensitivity to *only* k_T in γ -jet
- What role does the fragmentation play (if any)?

Physics Motivation

- New p+A results from PHENIX.
 Opportunity at sPHENIX to study cold nuclear matter effects also
- What role does a "classical" nucleus play?
- Stronger color fields?
- Can we disentangle effects from factorization breaking and multiple scattering/flow/Boer Mulders/etc.?
- What role does k_T broadening play?
- Many (many) questions that could be investigated

- Current γ-h[±] results suffer from low statistics
- sPHENIX will have significantly more integrated p+A luminosity
- Potentially can investigate spin dependence assuming statistics are large enough

Method

- Working with Jet Structure group as well Currently have access to 10k PYTHIA8 direct photon-jet events with full GEANT simulation
- Collect (isolated) direct photons with away-side jets and hadrons
- Analysis code PhotonJet is in GitHub Anyone can use and take a look at the already produced PYTHIA and G4 hits files by Dennis/Chris

Photon and Jet Response

Results match Dennis' shown at the sPHENIX collaboration meeting

Jet Response

- All small cone sizes have similar jet response
- Potential to study γ-jet as a function of jet cone size
- Future study: jet p_T
 resolution as a
 function of p_T and R

sPHENIX Jet Resolution

- To measure $p_{out} = p_T^{assoc} sin(\Delta \varphi), need \\ good resolution of jet angles \\ and p_T$
- Good φ and η resolution:
 ~0.02
- Photon φ resolution is small compared to jet φ resolution

γ-Jet Observables

- p_T balance of γ-jet corrected for photon and jet response (1/0.82 and 1/0.95)
- p_T imbalance already shows presence of k_T acoplanarity at truth level

Δφ Response

- Reconstructed distribution compares reasonably to truth distribution
- Asymmetry about π is due to jet φ resolution asymmetry

pout Response

- p_{out} shows similar asymmetry about
 0 due to jet φ resolution
- It appears that there should be sufficient statistics to distinguish between perturbative and nonperturbative contributions
- Question: Can we treat in a TMD framework? Widths are quite large: ~2.5 GeV/c
 - These PYTHIA events are also at very high Q²: p_T >30 GeV
 - Clearly a two scale problem but 2.5 GeV/c is not as much on the order of Λ_{QCD}

What will we actually measure at sPHENIX?

- According to PYTHIA: $\sigma^{qg \rightarrow q\gamma} \approx 3x10^{-6} \text{ mb} = 3000 \text{ pb}$
 - For RHIC kinematics qg—>qγ process dominates, ~85% of direct photon events
- From the RHIC Cold QCD plan:
 - Expect 300 pb⁻¹ pp at 200 GeV luminosity
- 3000 x 300 x 0.85 = 765,000 γ-jet events in pp seems way too large (because it is), doesn't include acceptance/efficiency/jet reconstruction etc....
- Plan to do a full PYTHIA+GEANT simulation to determine what our reconstruction efficiency will actually be as a function of p_T^{γ}
- This would in principle be useful to the collaboration as a whole as γ-jet is also
 of interest to e.g. Jet Structure topical group

Summary and To-Do

- Factorization breaking of nonperturbative functions predicted in p+p—>h+X
- Recent PHENIX paper studied p+p—>h+h+X, p+p—> γ +h+X. Ideal measurement is γ +jet due to control over fragmentation, amongst other things
- Currently analyzing Jet Structure Group's 10k γ-jet events with p_T >30 GeV/c, preparing some jet reconstruction plots for QM17
- To Do
 - Would like to study a broader range of $p_T^{\ \gamma}$ will start working with my own PYTHIA files down to $p_T^{\ \gamma} {\sim}\, 10$ GeV/c
 - Determine how small p_T^{jet} sPHENIX can measure to? That will ultimately be the limit for direct photon-jet measurement in p+p collisions
 - Working on a full PYTHIA+GEANT simulation study of acceptance and efficiency to determine how many γ-jets we will actually measure

Back Up/Extras

Isolation Cut

- Studying effect of isolation cut on direct photon
- Current requirements:
- Isolation cone of $R = \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}$ 0.4 radians
- Entire isolation cone region restricted to be within |η|<1

$$\Sigma(E_{\gamma} + p_T^{tracks}) < 0.1 \times E_{\gamma}^{iso}$$

- Results in ~4000 of the 10000 photons
- This can obviously be altered depending on isolation cone size, energy restriction, etc.

γ-jet vs. γ-h

- γ-jet allows control over fragmentation
- Addition of second nonperturbative final-state scale j_T draws widths in significantly

Δφ Resolution

- Δφ resolution shows same behavior as jet φ resolution
- Same mean and width for the Gaussian
- Indicates resolution for Δφ is dominated by the resolution on the jet azimuthal angle

